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A first-order quasi-linear homogeneous system of equations with two dependent and two independent variables is considered. 

Various one-dimensional steady gas flqws can be modelled by systems of this type. The symmetries of the system considered are 

used to construct holonomic constraints between the dependent (and independent) variables. The holonomic constraints between 

the variables are used to reduce the dimension of the system and to construct its exact solutions. 0 2001 Eisevier Science Ltd. 

All rights reserved. 

It is well known that a knowledge of the symmetries (groups of continuous transformations) of systems 
of partial differential equations enables one to simplify the problem of integrating them. Various 
possibilities of using symmetries to integrate systems of partial differential equations have been 
considered, for example, by Ovsyannikov [l] and Olver [2]. 

It is also well known that a knowledge of the symmetries of a system of ordinary differential equations 
enables its first integrals to be found. The first integral can be regarded as a certain holonomic equation 
of the constraint between the dependent variables of the system. A knowledge of this constraint for a 
system of equations enables its dimension to be reduced by one. The possibilities of a similar approach 
to the investigation of symmetries were considered earlier (see, for example, [3]). 

The notion of a first integral has been used for various purposes for systems of partial differential 
equations as well. In particular, Bernoulli’s equation of the steady motion of an ideal gas is obtained 
as a first integral (along streamlines) of the equations of gas motion [4]. The notion of a first integral 
for a system of partial differential equations has been used to solve some variational problems [5]. 

Instead of the notion of a “first integral” we will use the term “holonomic constraint” between the 
variables of the system. In the general case, this constraint contains the independent variables of the 
system in addition to the dependent variables. The use of such a constraint for systems of partial 
differential equations, unlike systems of ordinary differential equations, leads to limitations in 
formulating the boundary conditions for the system. Hence, there are also limitations on the form of 
the solutions (the integral manifolds of the system). 

In this paper we use the notion of a holonomic constraint to reduce the dimension and to construct 
exact solutions of a first-order quasi-linear homogeous system of partial differential equations with two 
independent and two dependent variables. Some gas and liquid flow processes are described by systems 
of this form, for example, the one-dimensional steady isoentropic gas flow and the liquid flow in a pipeline 
with elastic walls. 

Note also that a holonomic constraint can be regarded as a special form of constraint of more general 
form, which also includes the derivatives of the dependent variables. These constraints are constructed 
using the method of differential constraints, a description of which can be found in [6]. The addition 
of a differential constraint or a holonomic constraint between dependent variables makes the initial 
system overdefined. Hence, the main “techniques” of the method of differential constraints is an 
investigation of the overdefined system for compatibility using Cartan’s method of external forms or 
the Janet Spencer--Kuranishi method. 

In this paper, to construct holonomic constraints we will use certain “a priori information”, starting 
from a preliminary analysis of the properties of the initial system. That is, to construct the holonomic 
constraint of the system of equations considered we will use the symmetries of the system. 
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1. THE INITIAL SYSTEM OF EQUATIONS 
AND THE DETERMINATION OF 
THE HOLONOMIC CONSTRAINT 

Consider the system of equations 

ad au2 
-+a,p*-=0, 

au2 
-+a,,u 

, ad 
,1+a2+4 

2 ad , au2 
axI ax2 ax2 

a,2+a2*u =j-p=O (1.1) 

Herex’ andx2 are the independent variables, u1 and u2 are the dependent variables, and the coefficients 
all, a12, azl and a22 are constants. 

Note that, for systems of equations which describe the one-dimensional steady fluid flow, x’ defines 
the time while x2 defines the spatial coordinate. The variable U’ usually defines the longitudinal flow 
rate, while the physical meaning of the variable U* depends on the problem considered. For the one- 
dimensional steady isoentropic gas flow, u2 defines the velocity of sound in the flow [7]. For the liquid 
flow in an elastic pipeline, U’ defines cross-section area of the pipeline [8]. The matrix of the coefficients 
of the system is also governed by the specific form of the problem. 

We will denote by E C R4 the subspace formed by the dependent and independent variables of the 
system. In the geometrical approach, system (1.1) can be regarded as a certain surface C in space J’, 
consisting of the variables of the system and the derivatives of the dependent variables (l-jet space)[9]. 
The space of the integral manifolds of system C will be denoted by U,. 

Consider a certain function o(u, X) and a certain subspace U, C U,. 

Definition 1. We will call the expression 

O(u,x)Ius = c (c = const) (1.2) 

a holonomic constraint between the dependent (and also, in general, the independent) variables of system 
of equations (1.1) in the subspace of integral manifolds U,. (For simplicity we will also use the abbreviated 
designation HC.) 

According to this definition, it is not required that the function @(u, x) should define HC (1.2) over 
the whole space U, (as has occurred for systems of ordinary differential equations). This means that 
when seeking an HC it is necessary to determine, in addition to the function o(u, X) itself, a subspace 
U, also, for which relation (1.2) is satisfied. 

The use of an HC enables one to reduce the dimension of the system, but impose limitations on the 
space of the integral manifolds of system (1.1). Hence, below we give a definition of two “varieties” of 
HC. 

Definition 2. We will call relation (1.2) the complete HC of system (1.1) if the subspace Us is defined 
by the solutions of a certain partial differential equation with two independent variables. 

Definition 3. We will call relation (1.2) a particular HC of system (1.1) if the subspace U, is defined by 
the solutions of an ordinary differential equation (or a system of ordinary differential equations) and 
is defined apart from a certain set of constants. 

Holonomic constraints of this kind are called particular HCs since they can be determined 
immediately if we know some analytical solution of system (1.1). Such HCs will be of no interest here. 
However, HCs of this kind will be considered if they appear when solving the problem of finding the 
function o(u, x) because of limitations on the space U,, for which the given specific function Cp(u, x) 
exists. 

2. THE CONDITIONS FOR A HOLONOMIC CONSTRAINT TO EXIST 

As noted above, when solving the problem of finding the first integral for a system of ordinary differential 
equations, a group-theory approach is used in a number of papers. 

We will use the terminology of [9] below: the Lie vector field xis called an infinitesimal symmetry 
of system (1.1) if it touches the surface C. Note that this condition is equivalent [l] to the condition 
that system (1.1) should be invariant under the action of the continued operatorxof a continuous group 
of transformations. 
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By the terminology of [9], when seeking the first integral in [3] a function is used which is obtained 
from the condition that a certain surface should be touched by the vector fieldx. In this paper we will 
also define the HCs for a system of partial differential equations using the group-theory approach. 

Suppose the vector field X_ is an infinitesimal symmetry of system (1.1). We will denote by X the 
projection of the vector field X onto the space E. We define the function Q(u, x) (or a family of functions) 
from the condition 

- 
X(qNu,x)) = X($(&X)) = 0 (2.1) 

We will further use the function Q(u,x), which satisfies condition (2.1) to find the HC. To do this we 
determine the family of “invariant” surfaces S, in E-space from the condition that the vector field X 
touches these surfaces. This family of surfaces can be defined by the expression 

Q(u, x) = c (c = const) (2.2) 

If relation (2.2) holds for a certain function, which satisfies conditions (2.1) and a certain subspace 
U, of integral manifolds of system (1.1) then, by Definitions 1-3, the function @lu, x) defines the HC. 

We can also give the following interpretation of the use of the vector field X. It follows from the 
above that the vector field _?? is touched by the surfaces S, and C. Differentiating expression (2.2) with 
respect to the independent variable, we obtain in J’ a certain surface Si, which is the “transform” of 
the surface S,. For an HC (some “degree of completeness”) to exist, it is necessary that the surfaces ST 
and C should intersect. 

Hence, we need to determine the specific form of the function o(u, x) and the subspace U, for this 
function. 

Suppose expression (2.2) is solvable for one of the variables ul, i.e. we can write 

u’ = l$;‘(u’,x’,x*) (2.3) 

where Qi’(ui, x’, x2) is the “inverse” function, obtained when solving (2.2) for u’. Here i = 1 if 1 = 2 
and1 = 2ifl = 1. 

We substitute the expression for the variable u’ from (2.3)‘into (1.1). In the general case we obtain 
an overdefined system of partial differential equations C,, containing two equations in the variable 

ui. We will assume that system C, is compatible if at least one function .i(_?,x2) (not identically constant) 
exists which is the solution of system C,. 

Two cases are possible for the system of equations of the form considered. Suppose one of the 
equations of system C, depends linearly on the other equation. Then, from a comparison of these 
equations no limitations (constraints) follow for the variable occurring in o;*(u, x), and we can regard 

C, has an equation with a single dependent variable ui. The boundary conditions for this partial 
differential equation can be specified with a “functional” arbitrariness and, consequently, the function 
o(u, x) defines the complete HC. 

If, on substituting o;‘(u,x) into (l.l), the equations of system C, are linearly independent, then system 
C, is overdefined and when it is compatible we obtain a particular HC. 

In the light of the above we can formulate the following assertion. 
Assertion. If on substituting $;r(u, x) into (1.1) the equations of system C, are linearly dependent, 

HC (2.2) exists and is complete. If the equations of system C, are not linearly dependent, then when 
& is compatible we have a particular HC. 

Note that for the system considered, which has only two independent variables, we can have HCs 
corresponding to only two “limiting” cases (i.e. Definition 2 or Definition 3). For systems of equations 
of a different class other HCs (of an “intermediate” type) are also possible. 

We will now construct the HC of system (1.1) using the above definitions and procedure. 

3. HOLONOMIC CONSTRAINTS AND 
THE SOLUTIONS OF THE SYSTEM 

The governing equations for the infinitesimal symmetries of system (1.1) were obtained in [lo]. It follows 
from the solution of these equations that the infinitesimal symmetries of system (1.1) are defined by 
vector fields X of the form 
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x,=6, xq$. x3=x 
d 2a 

7+X ax ax2 

x, =u’ 
a 

I+U 22+x2 a 
au au2 2’ ax 

x =!_+xl a 
5 au1 ax2 

We will construct the HCs for some vector fields. 

Vector field X’. The vector field X’ touches the family of surfaces 

4(u’,u2,x2) = const 

where o is an arbitrary continuous function. Since the function o is arbitrary, we will seek an HC of the 
form 

u2 = y(x2,u’) (3.1) 

where w(x2, u’) is an arbitrary function (w(x2, u’) = @;‘(u’, u2, x2)). 
Substituting (3.1) into (1.1) we obtain the system C2 

ad 
l’%P 

I ad 
-7+a12w 

ay ay ad =. -- 
ax ax 2 + a12v au1 ax2 ax 

av ad I aw I av ad ad 
aU,,I+a22u a,2+a22u Qax2 -+a2’~-_T=0 

ax 

We will seek the function w(x2, u’) such that the HC is complete (by Definition 2). To do this we 
assume that the function IJI depends solely on u’. After substitution we can conclude that system x2 
consists of linearly dependent equations with w = k’u’ + k2, where 

4 =[(a,, +azl -al,Vq21 yz 

The constant k2 = 0 when all f az2 and k2 is an arbitrary constant when a,, = a22. For 
w = kg’ + k2 we obtain the system C, from system Z2, which in this case consists of a single equation 

ad 
I+ 
ax (3.2) 

Hence, the complete HC for system (1.1) constructed using vector fieldX’, has the form of a surface 

u2 - k,u’ = k2 (3.3) 

Here the subspace U, of the integral manifolds of system (1.1) is determined by the solutions of Eq. 
(3.2) and formula (3.3). 

Note that the HC of the form u2 = I defines a travelling wave of the first kind (a simple wave). 
Simple waves for the one-dimensional equations of gas dynamics were discovered by Riemann, and 
for systems of multidimensional quasi-linear partial differential equations by Yanenko [ll]. 

Particular solutions of Eq. (3.2) can be obtained using the expression 

x2 =(a22u’ +a2,u’ +a,,k, lkl)x’ +f(u’> 

wheref(u’) is an arbitrary continuous function. By specifying the form of this function we obtain different 
solutions of the initial system. 

A similar HC can be obtained using the vector field X,. 

The vector field X2. The vector field X2, like X’, enables us to obtain HC (3.3). However, we will 
construct the particular HC using this vector field for the case when al’ = azz = 1. Note that the one- 
dimensional steady isoentropic flow of a gas can be described by a system of this form [7]. 
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The vector field X2 touches the family of surfaces 

$(u’,u*,x’) = const 

where I$ is an arbitrary continuous function. Since the function 4’ is arbitrary, we can put 

u* = v(x’, u’) 

where ~(x’, u’) is an arbitrary function (~(x’, u’) = @(u’, u*, xl)). 
Substituting (3.4) into (1.1) we obtain the system Z2 

au’ ( a~ ad 
I+ u’ +a,,y- 1 -=o, av av au' 

ax ad ax2 g+ra+ u’$J+a,,yl -=o ll' x' ( 1 au1 ax2 
From the condition for this system to be compatible we have 

(3.4) 

(3.5) 

We will seek the function tl@‘, u’) such that the HC corresponds to Definition 3. To do this we can put 

w = (u’ + y)“f(x’) (y = const, n = const) (3.6) 

wheref(x’) is an arbitrary function. The HC can be obtained most simply for n = 1. In this case, from 
(3.5) taking (3.6) into account, we obtain the expression 

u’ = x2 df+s 
a12f3 - a2,f dr’ (3.7) 

where 5(x’) is an arbitrary continuous function. Substituting (3.6) and (3.7) into system x2 we obtain 
a system of ordinary differential equations C, for the functions&‘) and S(x’) 

$+%2f3 -a,,f)+ -$ 
( ) 

*(*+a,, -2a,,f*)=O 

~(a~2f3-a2,f)+-$S+a12sf2 +a,,yf*)=O 

(symbolic calculations were carried out on a computer using the MAPLE V program). The solution of 
this system (together with (3.4) and (3.6)-(3.7)) determines U,. 

Hence, the HC for system (l.l), constructed using the vector fieldX2, has the form of a surface 

u* -(U’ + y)j-= 0 (3.8) 

In this case the subspace U, of integral manifolds of system (l.l), for which this HC exists, is defined 
by the solutions of system Z, and formula (3.7). 

Note that the vector field & also enables us to determine the HC of the form (3.8) with y = 0, since 

uu* 4)(&“‘, = 0 

The vectorfield X5. The vector field Xs touches the family of surfaces 

@(U’ - x*/x’, u*, 9) = const 

where o is an arbitrary continuous function. Since the function o is arbitrary, we can put 
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U’ = x*/x’ + w(x’, u2) 

where JJ(X’, u2) is an arbitrary function. 
The condition for the system X1 to be compatible (when all = o22 = 1) has the form 

av w 
I+ l+a,2u 

2 au2 u2 at+f 
2=a2, 12+aZ,u 2 av 

ax x ( 1 2 au2 
ax x au au2 ax2 

(3.9) 

(3.10) 

This condition can be satisfied assuming 

W = (u2Y!!(x’ ) (n = const) (3.11) 

where&‘) is an arbitrary function. The HC can be found most simply when n = 1. In this case, from 
(3.10), taking expression (3.11) into account, we have 

U2 = (%i - l)fi* df x2 -- 
x’(oi2 -a2,f2) dx’ (q2 -a2,f2) 

+s (3.12) 

where $(x1) is an arbitrary continuous function. For the functions&‘) and S(x’) we have the system 
of ordinary differential equations XQ 

+f(l-a2,)(f2 -a,,a,,)=O 

-$(a2,f2-a,,)x’+S a2,fx’-$+fx1J=$+f2-a21a,2 
( > 

=O 

The solution of these equations determines the subspace of integral manifolds US of system (1.1) for 
the HC 

U’ -x2/x’ -u2f(x’)=O 

where U* is defined by (3.12). 
Hence, the symmetries of the system of partial differential equations can be used to construct 

holonomic constraints between the dependent (and independent) variables of the system. The use of 
these constraints enables the dimension of the system to be reduced and enables its particular exact 
solutions to be constructed. 

I wish to thank K. G. Garayev and V. G. Pavlov for useful comments. 
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